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Introduction

» Consider the optimization problem
minimize f(x)
subject to « € ()

» The functionf : R — R that we wish to minimize is a real-
valued function called thabjective function or cost function.
The vectok = [z, 29, ...,2,)f € R* . The variables,, ..., z, are
often referred to agdecision variables. The set) is a subset of
R" called theconstraint set or feasible set.

» Finding the “best” vectog over all possible vectors in
This vector is called theminimizer of / overq . It is possible
that there may be many minimizers.



Introduction
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There are also optimization problems that require maximization
of the objective function, in which case sea&ximizers.
Minimizers and maximizers are also calledremizers.

Maximization problems can be represented equivalently in the
minimization form because maximizig Is equivalent to
minimizing —f .

This problem is a general form otanstrained optimization

problem. If o = r» , then we refer to the problem as an
unconstrained optimization problem.



Introduction

» The constraint: ¢ 0 IS callecsat constraint.
» Often, the constraint set  takes the form
Q={x:h(x)=0,g(x) <0}
wheren and; are given functions. We refer to such
constraints afunctional constraints.



Global and Local Minimizers

» Definition 6.1: Suppose that: r" — R IS a real-valued
function defined on some set- R . Apeint Q |ea
minimizer of f over( If there exists>0 such that > f(z*)
forall |z —z*|| <e¢ anaeQ\{z*} .ApantQ gkobal
minimizer of f overq iff(z) > f(z*) foralle O\ {x*}

» If we replace> by , then we havstract local minimizer
and astrict global minimizer, respectively.
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Global and Local Minimizers
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If x*is a global minimizer of over , we writec*) = mingcq f(x)
andz* = arg mingeqn f(x)

If the minimization is unconstrained, we simply write

x* = argming f(x) O x* = argmin f(x)

Example:iff: r - r is given byz) = (z +1)> + 3 , then
argmin f(xr) = —1

Strictly speaking, an optimization problem is solved only when
a global minimizer is found. However, global minimizers are,
In general, difficult to find. Therefore, in practice, we often
have to be satisfied with finding local minimizers.



Conditions for Local Minimizers

» Given a functiory : r» — R, recall that the first-order
derivative off , denoted by , IS

» The gradientyf is just the transposebgf  ; thatfis; (Df)!
» The second derivative gf  (also calléessian of f) is

- . ]
G(@) - ()

F(x) = D*f(x) = ) s N s
_Baclé)fxn <ZL‘) T 87”2(33) |




Conditions for Local Minimizers

» Example: Let

f(z1, 22) = Bxy + Sz + 1129 — T2 — 227

Df(@) = (Vf(@)" = | (@), gL()] =[5+ 22— 221,8 + 21 — 4z

IR -
F(w) £ DQf(m) — [ WQH(:B) 39023271<w> _ [_12 _14
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Feasible Direction

» Definition 6.2: Avectold ¢ R*,d #0  Id@asibledirection at
x € Q If there existsy, >0  such that- ad € 0 forall|o, g

» Thedirectional derivative of f in thedirection d , denotedg% ,
IS the real-valued function defined by

of , | .. f(x+ad) — f(z)
%(m) = lim,,_o -

d; is a feasible direction
d, is a not feasible direction



: : : : 0 _ d) —

Directional Derivative  2(z) = lim,_, 22 /@

» If ||d|| =1, thent s the rate of increas¢ of zat in the
directiond .

» Suppose that and are given. Then ad) IS a function
of o, and

0 0
a—(‘];(m) = %f(:n + ad)

a=()

» Applying the chain rule yields

0 0
3—£(w> = %f(a: + ad) = 9 f(@)7d = (v f(x),d) = d v flz)
» In summary, ifg is a unit vector, thenf(x), d) is the rate of

Increase of atthe poiat in the directi®n

——————————————————————

10 = flg(x) = f'(g(x))g ()



Example
» Definef: R* = R by(x)=zz2;  anddet [%7%7 1}T

The directional derivative gf In the directi@n

[ 1/2 ]
%(m) = v f(x)'d = [vyxs, m123, 1119] | 1/2 | = Tos + 561:1:; + V211
1/V2]
» Note that becaus@|| =1 , the above is also the rate of increase

of f atx In the direction
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Theorem 6.1 First-Order Necessary Condition (FONC)

» Let beasubset®&fandf ' areal-valued function Qn
If «* Is alocal minimizer of over , then for any feasible
directiondg atz* , we have

d' v f(z*) >0

» Proof: Definez(a) =z* +ad € Q . Note that) = x*

Define the composite function
o(a) = f(z(a),

Then, by Taylor’s theorem

[+ ad) — f(z*) = d(a) — ¢(0) = ¢/(0)a + oa) = ad” 7 f((0)) + o(«)
whereqa >0 . Thus, (o) > ¢(0) |, thatfisg* + ad) > f(x*) for
sufficiently small values o >0 2 Is a local minimizer), then
we have to have’ 7 f(x*) > 0

12



First-Order Necessary Condition (FONC)

» =1 does not satisfy the FONC, whereas satisfies th

FONC. N
Input @
(Vf(x4),dy) <0 \
\ feasible
directions
Vf{X1) Xo
—~—
Vf{xZ)
function value f=3 f=2 =1
<
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First-Order Necessary Condition (FONC)

» An alternative way to express the FONC4§ for all
feasible directiong

» In other words, it* is a local minimizer, then the rate of
Increase of ak* In any feasible direcigon Qin is
nonnegative.

» Alternative proof: For any feasible direction, there existso
such that for alk € (0,a)

flx") < f(z" +ad)
Hence, for alk € (0, &)
fx" + ad) — f(x")

(87

Taking the limita. — 0 , we conclud%é(a;*) > (

> ()
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Corollary 6.1 Interior Case

» Let beasubset®&fandf ¢! areal-valued function Qn
If z* IS alocal minimizer of over andif IS an interior

point of 0 , then
v/xT) =0

» Proof: Suppose tha@t has alocal minimizer thatis an
interior point of, . The set of feasible directionsat  Is the
whole ofR". Thus, foranyi € r* 4" v f(z*) >0  and
—d" 7 f(x*) > 0. Henced” v f(xz*)=0 forallke B , which
Implies thaty f(z*) = 0

15



Example
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Consider the problemuinimize 2 + 0.523 + 3z + 4.5

subject to 1,29 > 0

Problem 1: Is the first-order necessary condition for a local
minimizer satisfied a = [1,3]7 ?

Solution: Atz = [1,3]7 , we havef(z) = [221, 20 + 3|1 = [2,6]

The point is an interior point of= {x : 2; > 0,2, > 0} . Hence,
the FONC requires thatf(x) =0 . Therefore, the potnfl, 37
doest not satisfy the FONC for a local minimizer.

4

3
Level sets of this function 2\
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v f(x) = [221, 29 + 3|F

Example
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Consider the problemminimize z? + 0.5¢3 + 3z5 + 4.5
subject to 21, 29 > 0 On the boundary of )

Problem 2: Is the FONC for a local minimizer satisfied éiTO,B]T

Solution: Atz = (0,37 , we havwef(z) = [0,6]" , and hence
d' 7 flx) =6d,, whered = [d,,d))" . Fdr tobe feasible at |,
we need;; >0 ang can take an arbitrary valtRe Tine

point  =[0,3]7 does not satisfy the FONC for a minimizer
becausel, Is allowed to be less than zero.

For examplegd = [1,-1]" Is a feasible direction, but
dTVf(CU):—6<O A

17



v f(x) = 221, 2 + 3]
Example

» Consider the problemuinimize ? + 0.523 + 35 + 4.5

subject to 1, 29 > 0 On the boundary of )

» Problem 3: Is the FONC for a local minimizer satisfied éiTl,O]T

» Solution: Atz =[1,07 , we havef(z)=[2,3]' , and hence
d' <7 f(x) =2d, +3d,. Ford to be feasible, we negd> 0 and
d; can take an arbitrary valuelta For exampled = [—5.1]7 IS
a feasible solution. Bw' 7 f(x)=-7<0 . Thus,[1,0]”
does not satisfy the FONC for a local minimizer.

7\
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v f(x) = 221, 2 + 3]
Example

» Consider the problemuinimize ? + 0.523 + 35 + 4.5

subject to 21, 29 > 0 On the b(?undary of )

» Problem 4: Is the FONC for a local minimizer satisfied éiTO,O]T

» Solution: Atz = (0,07 , we havef(z)=10,3]' , and hence
d' <7 f(x)=3d, . Ford to be feasible, we need> o and o
Hence,x = [0,0]! satisfies the FONC for a local minimizer.

19



Example

» There are two base station antennas, one for the primary base
station and another for the neighboring base station. Both
antennas are transmitting signals to the mobile user, at equal
power.

» The power of the received signal is reciprocal of the squared
distance from the associated antenna.

» Find the position of the mobile that maximizes the signal-to-
Interference ratio.

Primary Neighboring
Basestation I" '1 Basestation

Ny

Awa iy /\
1

20 ={ Mobile




rimary | n
asestation | station
E | | |

f————+] Mobile

» The squared distance from the mobile to thexprimary antenna is
1+ 22, while the squared distance from the mobile to the

neighboring antenna is+ (2 — )’ . Therefore, the signal-to-
Inference ratio is
f(a) = 1+ (2—2)
1+ 2?2
, —22—2)(1+2%) —2x(1+ (2—x)*) 4(x* — 2z — 1)
fle) = (1+ 22)2 T DE
» By the FONC, at the optimal positian  we hale*) =0

Hence, either* =1 -2 0Or=1+ 2 . Evaluating the

objective function at these two candidate points, it's easy to see
that 2 =1 -2 Is the optimal solution.

——————————————
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Example

» Consider the set-constrained problefiimize f(x)
whereq = {[zq, z|" : 2? + 22 =1} subject to x €

» Problem 1: Consider a point c 0 . Specify all feasible
directions atz* .

» Solution: There are no feasible directions at any

» Problem 2: Which points in  satisfy the FONC for this set-
constrained problem?

» Solution: Because of the solution for Problem 1, all points in
(2 satisfy the FONC for this set-constrained problem.

22



minimize f(x)

subject to € ()
Example Q= {lzn 2o 22+ 22 =1)

» Problem 3: Based on Problem 2, is the FONC for this set-
constrained problem useful for eliminating local-minimizer
candidates?

» Solution: No, the FONC for this set-constrained problem is not
useful for eliminating local-minimizer candidates.

23



minimize f(x)
subject to & € ()

N,
\
N
N\,

-
AR
Example L b0 o {1
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Problem 4: Suppose that we use polar coordinates to
parameterize pointse (0  in terms of a single parameter

r1 =cosh andz, =sinf . Now use the FONC for unconstrained
problems (with respect @ ) to derive a necessary condition of
this sort: ifx* € 0 Is a local minimizer, thahy f(z*) = 0 for
all d satisfying a “certain condition.” Specify what this certain
condition is.

Solution:
Write h(8) = f(g(8)) , where: R — R? is given by the equations
relating 0 tox = [z1, 23] . Note thBy(h) = [—sinf,cosf]T . Hence,

h'(0) = Df(9(0))Dg(0) = Dg(6)" 7 f(g(6))
Notice thatDg(f) istangent® aat g(f . Alternatively, we
could say thaDg(#) is orthogonalie= ¢(6) .

24



Example (6) = Df(9(6))Dg(6) = Dg(6) 7 f(5(0)

» Solution: ) ; ;
Suppose thak* € ¢ is a local minimizer.td/e* =/g(6*) . Thegr

IS an unconstraméd minimizer af By tt{e FOmdnconstralned
problems,h/(§*) = 0, which |mpI|es tht < f(x*) =0 for alf

tangent td? atc* (or,?alternatively, far dl orthogonal tac* )

v
Same as the Corollary 6.1 Interior Case
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Theorem 6.2 Second-Order Necessary Condition
(SONC)

» Letoc r" ,feC® afunctionan z*, alocal minimizef of
over( ,andd a feasible directionrat d71f; f(z*) =0 , then

d'F(x*)d > 0 Corollary 6.1 Interior Case
where F Is the Hessian 6f

» Proof: We prove the result by contradiction. Suppose that there
IS a feasible direction at  such that; f(z*) =0 and
d'F(z*)d < 0. Let z(a)=2*+ad and define the composite
function ¢(a) = f(z* + ad) = f(z(a))

By Taylor’s theorem,

6(c) = $(0) + ¢"(0)% + o(a?)
where by assumptiony (0) = d' 7 f(z*) =0 and
¢"(0) = d' F(x*)d < 0.

26



Theorem 6.2 Second-Order Necessary Condition
(SONC) S0 =d' v fl@) =0  ¢"(0) = d"Flz)d < 0
» For sufficiently smalla

dla) = 4(0) = ¢"(0)5 + o(a?) < 0

f(x* + ad) < f(x¥)
which contradicts the assumption tkat  is a local minimizer.
Thus,

that is,

S0 =d P20 T ) = flala)
f

27



Corollary 6.2 Interior Case

» Let z* be an interior pointoh c R 4f Is alocal
minimizeroff:Q - R feC® ,thenf(z*) =0 , ang’)
IS positive semidefinitéF(z*) > 0) ; thatis, for all ¢ r” :
d'F(z*)d >0

» Proof: If = Is an interior point, then all directions are feasible.
The result then follows from Corollary 6.1 and Theorem 6.2.

28



Example

» Consider a function of one variabféer) =23, f : R — R.
» Becausef'(0) =0 anﬂ(O)iO , the point satisfies both

-

~~~~~~~~ - They are necessary conditions, but are
» However,z =0 is not a minimizer. not sufficient conditions.

A f(x)
f(x)=x3

29



Example

» Consider a functioryf : R* — R, f(xz) = 22 — x5 . The FONC
requires thaty f(xz) = [221, —22,]" =0 . Thus,j0, 07 satisfies
the FONC.

» The Hessian matrix of iB(z) = g _02

» The Hessian matrix is indefinite; that is, for sote R? we

haved, Fd, >0 (e.gd; =[1,07 ); and, for same , we have
dyFdy <0 (e.g.,d,=[0,1]7 ). Thug;=1[0,0"  does not satisfy
the SONC, and hence it is not a minimizer.

5 /
\
N\ ol
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0 \ % ()
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O A S
0'0'0:'""\‘5\\\‘\\\\\\\‘\\*\‘\‘\‘\“‘&“"00
AN &0
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Theorem 6.3 Second-Order Sufficient Condition
(SOSC), Interior Case

» Let f € C? be defined on a region in which  is an interior
point. Suppose that f(z*) =0 ange*) > 0 . Then, isa
strict local minimizer off . .-

» Proof: Begggse—e‘c‘f/ , we hawer*) = F!(z*) . Using
assumption 2 and Rayleigh’s inequality it follows that # o
then 0 <\, (F(z")|d|? < d' F(z*)d . By the Taylor’s theorem

and assumption 1,

)\mm F(x”
fla +od) — fla) = 3d"Fla)d + of d]2) > 2T E gz oqjag > o
(p. 27)
Hence, for alk such thati|  is sufficiently small,

flx*+d) > flz)
which completes the proof.

a1 Amin(P)||z]]? < &7 Pz < M\pou(P)]|| 2| !



Example

» Let f(x)=22+22 .We havef(x) = 211,225 =0 If and only if
x=[0,0", Forall z ¢ r? , we have

Fla) = [g g] >0

» The pointz =[0,0]! satisfies the FONC, SONC, and SOSC. It
IS a strict local minimizer.

» Actually, z =[0,0]" Is a strict global minimizer.

\_\\\\\\\wf:’.‘
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Exercise 6.19

» An amphibian vehicle needs to travel from point A (on land) to
point B (in water). The speeds at which the vehicle travels on
land and water arg ang , respectively.

Suppose that the vehicle traverses a path thatmzes the total time
taken to travel from Ato B. Use the FONC to shbattfor the
optimal path above, the angles and  fgdlisell’s law:

sin 91 _ (] d

-

sinfy v

A
Does the minimizer for the

problem in part a satisfy :
the second-order sufficient  seeed=v,
condition? Speed = V,

D

Land

T I U /7%

Water
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Exercise 6.19

» Letz be the decision variable. Write the total travel timgas
which is given by

fla) = V1+ x? \/1
v
» Differentiating the expressmn 2
, x d—x
fz) =

U1V1—|—£C2—’U2\/1—|— d —

» By the first-order necessary condition, the optimal path
satisfies f/(z*) =0 , which corresponds to
x* B d—z*
viy/ 1+ (z%)?2 - voy/ 1+ (d —

which leads to
sinf; vy

sinfs vy
34



Exercise 6.19

» The second derivative gf is given by

1 _ 1 — 1
P = T 2P (it (A= 2P

» Hence,f”(z) >0 , which shows that the second order sufficient
condition holds.

35



Exercise 6.20

» Suppose that you have a piece of land to sell and you have two
buyers. If the first buyer receives a fractign  of the piece of
land, the buyer will pay yot,(z;)  dollars. Similarly, the
second buyer will pay you,(z,)  dollars for a fraction0of  of
the land. You goal is to sell parts of your land to the two buyers

so that you maximize the total dollars you receive.
Formulate the problem as an optimization problenhefkind
maximize f(x)
subject to @ € ()

Suppose that;(z;) = a;z;,i = 1,2, ewda; and, are given
positive constants such that> a . Findesdbible points that
satisfy the first-order necessary condition.

Among those points in the answer of part b, findredt also satisfy
the second-order necessary condition.
36



» We havef(ill> = Uy(x1) + Us(x9) and- {x:x1,09> 0,21+ 29 < 1}

» We havey/f(z) = a1, 0] . Becaygex) # 0 far all , we
conclude that no interior points satisfy the FONC. Next,
consider any feasible poiat fer>0 . Atsuch a point, the
vectord = [1,-1]" is a feasible direction. BUt; f(z)=a; —ay > 0
which means that FONC is violated (recall that the problem is
to maximizes ). So clearly the remaining candidates are those
for whichz, =0 . Among these,af <1 , ther [0, 1]" IS a
feasible direction, in which case we ha¥e; f(x) = a, > 0

This leaves the poit=[1,07 . At this point, any feasible
direction satisfles;; <0 and< —d, . Hence, for any feasible
direction, we have

d' 7 f(x) = diay + doay < diay + (—di)as = di(ag — as) <0

37So, the only feasible point satisfies FONG:is [1,0]”

Exercise 6.20 0



Exercise 6.20

» We haveF(z) =0 <0 .Hence, any point satisfies SONC (again,
recall that the problem is to maximize ).
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